# Sensitivity studies for 3<sup>rd</sup> generation LQ and RPV SUSY search

Keti Kaadze Fermilab









#### Outlook



- Motivation: search for new physics in final state with tau leptons and b jets
  - Single/Vector LQ
  - RPV Stop
- Review of the previous analyses and results
- Expected performance of the object ID with PU
- Current studies and results
- Plans



#### Motivation



- Symmetries between leptons and quarks motivate existence of boson fields mediating lepton-quark interaction
  - GUT, Composite models Leptoquarks
  - R-parity violating SUSY squarks or sleptons

superparenter 
$$W=rac{1}{2}$$

$$V = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$

 Dominant production of pair of heavy particles is via QCD interactions



- Considering heavy gluino (M>1.5 TeV) scenario in SUSY
- Pair production of third generation LQ or Stops are studied
  - Signature with two  $\tau$  leptons and two b jets:  $e\tau_h + 2b$ -jets and  $\mu\tau_h + 2b$ -jets





#### Overview of 7 TeV analysis



Major backgrounds -- ttbar and W/Z+jets processes

• Invariant mass of  $\tau_h$  and b-jet

$$M = \sqrt{(E_{\tau_h} + E_b)^2 - (\vec{p}_{\tau_h} + \vec{p}_b)^2}$$



• Search for excess over the SM background in S<sub>T</sub> distribution





PRL 110, 081801 (2013) arXiv: 1210.5629v1



## Stop vs LQ



- Cross sections agree within a couple of percent for heavy gluino scenario
  - Dependence on  $\tan \beta$  and stop mixing angle is small
- Branching fraction is strongly dependent on various parameters: SU(2) gaugino mass  $M_2$ , Higgsino mixing parameter  $\mu$ , stop mixing angle, etc.









#### Results on LQ3/RPV Stop



- Scalar LQ/Stops with RPV decay with masses below 525 GeV are excluded at 95% C.L.
- Limits are set on RPV coupling  $\lambda'_{333}$  for a given benchmark scenario

#### Benchmark:

- heavy or light M<sub>2</sub>
- Higgsino mixing  $\mu = 380 \text{ GeV}$
- $\tan \beta \sim 40$  and mixing angle  $\sim 0$









#### Current studies



- What higher center of mass (CM) machine can offer
  - Higher cross sections and thus a higher mass reach
  - Much higher pileup (PU):
    - Effects on the efficiency might be noticeable, but at high-p<sub>T</sub> we expect them to be less drastic needs checks and verification
- Outline of the current work presented today
  - Extrapolation of the reconstruction efficiencies at a particular PU scenario
    - Need for high PU Delphes samples to get more precise estimation of the expected signal efficiency (in touch with Sanjay Padhi et al.)
  - Estimation of background using lower CM and PU samples
  - Estimation of expected signal using lower PU samples at  $\sqrt{s}=14$  TeV
  - Check the sensitivity with 300 fb<sup>-1</sup> luminosity at  $\sqrt{s}$ =14 TeV
  - Things to do: plan for the next couple of months



## Object ID performance



• High PU is expected to degrade capabilities to identify physics objects: leptons, hadronic tau leptons, and b-jets









These performances are averaged over p<sub>T</sub>

→ gives conservative estimate of efficiencies at high PU for heavy resonance searches



#### Yield Estimates



- Background samples for different scenarios are not yet available
  - Fit tail of ST distribution
     with an exponential function;
     statistical precision of the fit
     is propagated as systematic
     uncertainty on the limits
  - Extrapolate the yield to high ST region
  - Scale the yields to cross sections for 14 TeV according to *arXiv:1206.3557*





- LQ Signal sample was generated for 14 TeV with old PU scenario
  - NLO cross sections according to arXiv:0411038, Phys.Rev.D71:057503,2005
- The yields were estimated by counting number of signal and background events above  $S_T > X$  GeV, where  $X = M_{LQ}$ ,  $S_T = p_T(1) + p_T(\tau) + p_T(b_1) + p_T(b_2)$



#### Kinematics at 7 TeV and 14 TeV



- The NLO effects at 14 TeV are more pronounced final state objects are expected to be more energetic and less central
  - Using the extrapolation of background yields from 7 TeV samples makes our results a bit less conservative



#### Generated quantities





#### Results



- Previous results:
  - D0 with 1/fb excludes
     ~200 GeV masses
  - CMS with 5 /fb at 7 TeV excludes ~500 GeV

 $D0 - \sqrt{s} = 1.96 \text{ TeV}, 1.1 \text{ fb}^{-1}$ 



CMS –  $\sqrt{s}$ =7 TeV, 4.8 fb<sup>-1</sup>



 Using asymptotic CLs and simple counting method yields ~1.3 TeV exclusion with 300 /fb





#### Further thoughts on these results



- Some improvements in the sensitivity is expected
  - Using  $S_T$  or M( $\tau$ ,b) for limits yields ~20% better limit
  - Improve high p<sub>T</sub> hadronic tau lepton and b-jet identifications
    - Decay products from  $\tau$  or b-hadron are expected to be boosted if produced by heavy resonance decays: current reconstruction/identification algorithms are optimized for objects with average momentum ranges manifest some efficiency drop at high  $p_T$  region
  - Consider events with one b-jet requirement
    - Improve overall selection efficiency crucial for higher mass signal hypothesis
  - More realistic PU expectation from new MC samples could change limits somewhat



## Summary



- Preliminary studies for third-generation LQ sensitivity were presented for 300 fb<sup>-1</sup> scenario at  $\sqrt{s}$ =14 TeV
- Further plans
  - Update study using parameterized simulation of background and signal samples to cover all luminosity/PU scenarios at  $\sqrt{s}=14$  TeV and 33 TeV
  - Derive limits on
    - RPV decaying Stop for a given benchmark scenario
    - RPV LQD coupling  $\lambda'_{333}$  vs stop mass for a given  $\mu$  or
    - $\mu$  vs stop mass e.g. for  $\lambda'_{333} = 1, 0.1, 0.01$ .
  - With minimal modification in the analysis, e.g. dropping the b-tagging requirement, we can also explore other RPV couplings  $\lambda'_{332}$  or  $\lambda'_{331}$





## **BACKUP**